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One way of building more powerful theorem provers is to use techniques from symbolic
computation. The challenge problems in this paper are taken from Chapter 2 of Ramanu-
jan’s Notebooks. They were selected because they are non-trivial and require the use of
symbolic computation techniques. We have developed a theorem prover based on the sym-
bolic computation system Mathematica that can prove all the challenge problems completely
automatically. The axioms and inference rules for constructing the proofs are also briefly
discussed.
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1. Introduction

One way of building more powerful theorem provers is to use techniques from symbolic
computation. So far, there has been very little research in this direction. The challenge
problems in this paper are taken from Chapter 2 of Ramanujan’s Notebooks [1]. They were
selected because they are non-trivial and require the use of symbolic computation techniques.
The preface to Chapter 2 describes the problems as being “fairly elementarv™, but states
that “several of the formulas are very intriguing and evince Ramanujan's ingenuity and
cleverness.” We suspect that several of the problems would prove quite challenging for
many mathematics graduate students even with the help of a symbolic computation system.

We have developed a theorem prover based on the symbolic computation system Mathemat-
ica [8] that can prove all the challenge problems completely automatically. This theorem
prover uses many of the same techniques that we incorporated in an carlier theorem prover
called Analytica [2, 3]. We plan to describe the theorem prover in greater detail in a forth-
coming paper.

Although decision procedures like Gosper’s algorithm [4] can prove some identities involving
summations, we have not found a decision procedure that can handle the problems proposed
here. Moreover, decision procedures only give the final result without intermediate steps.
Our theorem prover produces readable proofs in which each intermediate step is justified by
an axiom or a rule of inference that can be checked by the user. This usnally gives greater
insight into why the theorem is true.

2. Axioms that are used in proving the theorems

In addition to the simplification rules that are provided by the symbolic computation system.
the following axioms are also needed for proving the theorems. All of these axioms are
simple identities about summations. However, no symbolic computation system. including
Mathematica, implements these identities so that they can be applied in both dircctions.
In order to use these axioms effectively, a theorem prover (like the one we have developed)
must be constructed so that cycles are avoided and termination is guaranteed.
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3. List of problems

The list of challenge problems is given below. All of these problems can be proved auto-
matically by the theorem proving system we have developed. This system uses the rules for
summation given in the previous section and is similar to another theorem prover that we
have built called Analytica [2, 3].

Ramanujan used two abbreviations in stating the theorems. We will use these abbreviations
as well.
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3.1. Problems involving summation of rational functions
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3.2.

Problems involving infinite summations

Given that lim,— (> 7=; {:—lnn) = v, where ~ is the Euler constant, the following identities
can also be proved.
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Problems about the arctan function

The equations in this section can be proved using the standard trigonometric identities for
the arctan function. These identities are not provided by Mathematica and may be treated

as axioms.
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10. X2, arctan(ziz) = £
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4. A sample proof generated by our system

In this section, the proof for identity 1 in Subsection 3.3 is presented to illustrate how our
prover works. In the proofs of the identities in this and the next sections, some elementary
properties of the harmonic numbers H, = Y §_, ; as well as the properties of summations
given in Section 2 are used. All of the simplification steps involving summation and the
harmonic numbers are implemented directly by our theorem prover. None can be done by
Mathematica alone. We have been extremely careful to use only very general rules.
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change index of summations
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5. Outline of a more complicated proof

This section contains part of the proof of identity 10 in Subsection 3.1. The proof has
twenty steps, some of which are quite complicated. However, the time required to complete

the proof is only about two minutes.
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6. Related Work

There has been relatively little work on using symbolic computation techniques in antomatic
theorem proving besides our own research on Analytica [2. 3]. Suppes and Takahashi [6]
have combined a resolution theorem prover with the Reduce system. but their prover is
only able to check very small steps and does not appear to have been able to handle very
complicated proofs. London and Musser [3] have also experimented with the use of Reduce
for program verification, but did not consider theorems from other areas of mathematics or
computer science. Bundy [7] has investigated the use of induction lor finding closed forms for
summations. He is able to handle some very complicated examples. However. his techniques
are not applicable to the summations in this paper since they do not have closed forms.

References

1] B.C.Berndt, Ramanujan’'s Notebooks, Part [, Springer-Verlag. 1935, pp 25-13.
pring g Pl

(2] E.M.Clarke, X.Zhao. Analytica - An Erperiment in Combining Theorem Proving and
Symbolic Computation, Technical Report, School of Computer Science, ("arnegie Mellon
University, CMU-CS-92-147, Oct. 1992.

-7




[3] E.M.Clarke, X.Zhao, Analytica - A theorem prover for Mathematica, The Mathematica
Journal, Vol. 3. Issue 1. 1993, pp 56-71.

[4] R.W.Gosper, Indefinite Hypergeometric sums in MACSYMA, Proc. MACSYMA Users
Conference, Berkeley C'A. 1977, pp 237-252.

[5] R.L.London and D.R.Musser, The Application of a Symbolic Mathematical System o
Program Verification, Technique Report, USC' Information Science Institute.

[6] P.Suppes and S.Takahashi, An Interactive Calculus Theorem-prover for Continuity Prop-
erties, Journal of Symbolic Computation, No.7. 1989, pp 573-390.

(7] T.Walsh. A.Nunes. and A.Bundy. The Use of Proof Plans lo Sum Series. Proc. of 11th
International Clonference on Automated Deduction. June 1992,

[8] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer. Wollram
Research Inc., 1988.




